Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A phase-separated borosilicate glass, with a relative permittivity ranging from 3 to 3.5 and a loss tangent as low as 5.6 × 10−4, is presented for packaging applications for the next generation of mobile communications. Ionic polarizability for each borosilicate composition was calculated from the Clausius–Mossotti relationship for both the vitreous and crystalline structures, and the polarizability difference between the two is proportional to the dielectric loss. Small amounts of alkali modifier were added to improve the glass processability, and the loss tangent increased to the 1–7 × 10−3 range. The resulting glass is phase-separated, which has no impact in the millimeter-wave spectrum, as the wavelengths are considerably greater than the length scale of each immiscible phase.more » « lessFree, publicly-accessible full text available November 1, 2025
-
Abstract The planetary nebula NGC 6720, also known as the “Ring Nebula,” is one of the most iconic examples of nearby planetary nebulae whose morphologies present a challenge to our theoretical understanding of the processes that govern the deaths of most stars in the Universe that evolve on a Hubble time. We present new imaging with JWST of the central star of this planetary nebula (CSPN) and its close vicinity, in the near-to-mid-IR wavelength range. We find the presence of a dust cloud around the CSPN, both from the spectral energy distribution at wavelengths ≳5μm as well as from radially extended emission in the 7.7, 10, and 11.3μm images. From the modeling of these data, we infer that the CSPN has a luminosity of 310L⊙and is surrounded by a dust cloud with a size of ∼2600 au, consisting of relatively small amorphous silicate dust grains (radius ∼0.01μm) with a total mass of 1.9 × 10−6M⊕. However, our best-fit model shows a significant lack of extended emission at 7.7μm—we show that such emission can arise from a smaller (7.3 × 10−7M⊕) but uncertain mass of (stochastically heated) ionized polycyclic aromatic hydrocarbon (PAHs). However, the same energetic radiation also rapidly destroys PAH molecules, suggesting that these are most likely being continuously replenished, via the outgassing of cometary bodies and/or the collisional grinding of planetesimals. We also find significant photometric variability of the central source that could be due to the presence of a close dwarf companion of mass ≤0.1M⊙.more » « lessFree, publicly-accessible full text available May 16, 2026
-
ABSTRACT NGC 6302 is a spectacular bipolar planetary nebula (PN) whose spectrum exhibits fast outflows and highly ionized emission lines, indicating the presence of a very hot central star ($${\sim}$$220 000 K). Its infrared spectrum reveals a mixed oxygen and carbon dust chemistry, displaying both silicate and polycyclic aromatic hydrocarbon (PAH) features. Using the James Webb Space Telescope Mid-Infrared Instrument and Medium Resolution Spectrometer, a mosaic map was obtained over the core of NGC 6302, covering the wavelength range of 5–28 $$\mu$$m and spanning an area of $${\sim}$$18.5 arcsec $$\times$$ 15arcsec. The spatially resolved spectrum reveals $${\sim}$$200 molecular and ionized lines from species requiring ionization potentials of up to 205 eV. The spatial distributions highlight a complex structure at the nebula’s centre. Highly ionized species such as [Mg vii] and [Si vii] show compact structures, while lower ionization species such as H$^+$ extend much farther outwards, forming filament-defined rims that delineate a bubble. Within the bubble, the H$^+$ and H$$_2$$ emission coincide, while the PAH emission appears farther out, indicating an ionization structure distinct from typical photodissociation regions, such as the Orion Bar. This may be the first identification of a PAH formation site in a PN. This PN appears to be shaped not by a steady, continuous outflow, but by a series of dynamic, impulsive bubble ejections, creating local conditions conducive to PAH formation. A dusty torus surrounds the core, primarily composed of large ($$\mu$$m-sized) silicate grains with crystalline components. The long-lived torus contains a substantial mass of material, which could support an equilibrium chemistry and a slow dust-formation process.more » « less
-
BackgroundForecasting the responses of natural populations to environmental change is a key priority in the management of ecological systems. This is challenging because the dynamics of multi-species ecological communities are influenced by many factors. Populations can exhibit complex, nonlinear responses to environmental change, often over multiple temporal lags. In addition, biotic interactions, and other sources of multi-species dependence, are major contributors to patterns of population variation. Theory suggests that near-term ecological forecasts of population abundances can be improved by modelling these dependencies, but empirical support for this idea is lacking. MethodsWe test whether models that learn from multiple species, both to estimate nonlinear environmental effects and temporal interactions, improve ecological forecasts compared to simpler single species models for a semi-arid rodent community. Using dynamic generalized additive models, we analyze time series of monthly captures for nine rodent species over 25 years. ResultsModel comparisons provide strong evidence that multi-species dependencies improve both hindcast and forecast performance, as models that captured these effects gave superior predictions than models that ignored them. We show that changes in abundance for some species can have delayed, nonlinear effects on others, and that lagged, nonlinear effects of temperature and vegetation greenness are key drivers of changes in abundance for this system. ConclusionsOur findings highlight that multivariate models are useful not only to improve near-term ecological forecasts but also to ask targeted questions about ecological interactions and drivers of change. This study emphasizes the importance of jointly modelling species’ shared responses to the environment and their delayed temporal interactions when teasing apart community dynamics.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract The impact of microstructure on hardness in phase‐separated calcium aluminosilicate glasses is investigated. Changes in hardness are governed by microstructure deformations that occur during indentation. Phase separation leads to decreased hardness due to the incongruent yielding of the droplet and matrix phases. Moreover, the deformation of microstructures possessing dilute, spherical droplets did not have a significant impact on hardness. Microstructures characterized by concentrated, acicular droplets were found to deform through a process of droplet coalescence. This process absorbs additional energy during yielding and results in glasses that deform through droplet coalescence possessing improved hardness.more » « less
-
Abstract Glasses with nanoscale phase separation have the potential to possess improved hardness and fracture toughness while maintaining their optical transparency. Here we present the results of isothermal heat treatments of phase‐separated calcium aluminosilicate glasses. Our results indicate that a transition from Lifshitz–Slozof–Wagner (LSW)‐type kinetics to a diffusion‐controlled pseudo‐coalescence mechanism occurs at ~17% droplet volume fraction, which results in the droplets becoming increasingly elongated and interconnected. The activation barrier for both mechanisms suggests that calcium diffusion is the underlying means for the coarsening of the silica‐rich domains. Simple approximations show the transition cannot be explained by Brownian motion or Van der Waals attraction between domains, and instead suggest various osmotic forces may be responsible.more » « less
-
Abstract AimMacroecological analyses provide valuable insights into factors that influence how parasites are distributed across space and among hosts. Amid large uncertainties that arise when generalizing from local and regional findings, hierarchical approaches applied to global datasets are required to determine whether drivers of parasite infection patterns vary across scales. We assessed global patterns of haemosporidian infections across a broad diversity of avian host clades and zoogeographical realms to depict hotspots of prevalence and to identify possible underlying drivers. LocationGlobal. Time period1994–2019. Major taxa studiedAvian haemosporidian parasites (generaPlasmodium,Haemoproteus,LeucocytozoonandParahaemoproteus). MethodsWe amalgamated infection data from 53,669 individual birds representing 2,445 species world‐wide. Spatio‐phylogenetic hierarchical Bayesian models were built to disentangle potential landscape, climatic and biotic drivers of infection probability while accounting for spatial context and avian host phylogenetic relationships. ResultsIdiosyncratic responses of the three most common haemosporidian genera to climate, habitat, host relatedness and host ecological traits indicated marked variation in host infection rates from local to global scales. Notably, host ecological drivers, such as migration distance forPlasmodiumandParahaemoproteus, exhibited predominantly varying or even opposite effects on infection rates across regions, whereas climatic effects on infection rates were more consistent across realms. Moreover, infections in some low‐prevalence realms were disproportionately concentrated in a few local hotspots, suggesting that regional‐scale variation in habitat and microclimate might influence transmission, in addition to global drivers. Main conclusionsOur hierarchical global analysis supports regional‐scale findings showing the synergistic effects of landscape, climate and host ecological traits on parasite transmission for a cosmopolitan and diverse group of avian parasites. Our results underscore the need to account for such interactions, in addition to possible variation in drivers across regions, to produce the robust inference required to predict changes in infection risk under future scenarios.more » « less
An official website of the United States government

Full Text Available